skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Washburn, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseThe origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we usedCakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. MethodsUsing a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response inC. maritimaand identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. ResultsCakile maritimais tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool inC. maritimaand likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved inC. maritimaabiotic stress tolerance. ConclusionsThese findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response. 
    more » « less
  2. Abstract Genotype-by-environment (G×E) interactions can significantly affect crop performance and stability. Investigating G×E requires extensive data sets with diverse cultivars tested over multiple locations and years. The Genomes-to-Fields (G2F) Initiative has tested maize hybrids in more than 130 year-locations in North America since 2014. Here, we curate and expand this data set by generating environmental covariates (using a crop model) for each of the trials. The resulting data set includes DNA genotypes and environmental data linked to more than 70,000 phenotypic records of grain yield and flowering traits for more than 4000 hybrids. We show how this valuable data set can serve as a benchmark in agricultural modeling and prediction, paving the way for countless G×E investigations in maize. We use multivariate analyses to characterize the data set’s genetic and environmental structure, study the association of key environmental factors with traits, and provide benchmarks using genomic prediction models. 
    more » « less
  3. Sillanpää, Mikko (Ed.)
    Abstract Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years. The competition attracted registrants from around the world with representation from academic, government, industry, and non-profit institutions as well as unaffiliated. These participants came from diverse disciplines include plant science, animal science, breeding, statistics, computational biology and others. Some participants had no formal genetics or plant-related training, and some were just beginning their graduate education. The teams applied varied methods and strategies, providing a wealth of modeling knowledge based on a common dataset. The winner’s strategy involved two models combining machine learning and traditional breeding tools: one model emphasized environment using features extracted by Random Forest, Ridge Regression and Least-squares, and one focused on genetics. Other high-performing teams’ methods included quantitative genetics, machine learning/deep learning, mechanistic models, and model ensembles. The dataset factors used, such as genetics; weather; and management data, were also diverse, demonstrating that no single model or strategy is far superior to all others within the context of this competition. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  4. Maize (Zea mays L.) has been a focus of scientific research and breeding for over a century. It is also one of the most economically important crops in the world, with a value of approximately US$50 billion per year in the United States alone. Additionally, maize has long been the model species of choice for the study and exploitation of hybrid vigor, and it continues to be one of the world's most efficient converters of photosynthetic energy into starch. This review discusses the history and future of maize predictive breeding in the context of both genotype centric methods, and those focusing on genotype × environment × management interactions. Current prediction challenges are highlighted, as well as important advances in technology, methods, datasets, interdisciplinary collaborations, and scientific culture that will enable accelerated progress in predictive maize (and other crop species) breeding for years to come. 
    more » « less
  5. Deep learning methodologies have revolutionized prediction in many fields and show potential to do the same in molecular biology and genetics. However, applying these methods in their current forms ignores evolutionary dependencies within biological systems and can result in false positives and spurious conclusions. We developed two approaches that account for evolutionary relatedness in machine learning models: ( i ) gene-family–guided splitting and ( ii ) ortholog contrasts. The first approach accounts for evolution by constraining model training and testing sets to include different gene families. The second approach uses evolutionarily informed comparisons between orthologous genes to both control for and leverage evolutionary divergence during the training process. The two approaches were explored and validated within the context of mRNA expression level prediction and have the area under the ROC curve (auROC) values ranging from 0.75 to 0.94. Model weight inspections showed biologically interpretable patterns, resulting in the hypothesis that the 3′ UTR is more important for fine-tuning mRNA abundance levels while the 5′ UTR is more important for large-scale changes. 
    more » « less